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1 Introduction

The University of Michigan - Dearborn Intelligent Systems Club presents Wolf, a contender for the

18th Annual Intelligent Ground Vehicle Competition.

A “varsity” group of students from the University of Michigan - Dearborn having at least one

year of IGVC experience were assigned to develop a fully autonomous ground vehicle to compete in

2010. The team sought to reduce systems integration overhead by further developing the already-

proven “Wolf” robot platform.

2 Design Process

2.1 Competition Analysis

After Wolf competed in the 2009 IGVC, the team’s first action was to evaluate what design im-

provements were necessary for better performance. The team’s main findings were as follows:

• Although performance was not hindered by the rainy weather experienced at the competition,

the chassis should be more water resistant.

• The camera protruded too far in front of the vehicle, increasing the risk of collision.

• Odometry data was not adequately filtered, resulting in erroneous local mapping.

• Obstacle avoidance and path planning routines worked well in the simulator but were not

adequately tested in the field.

• Last minute changes to the software introduced unpredictable behavior.

2.2 Innovations

Despite its flaws, Wolf has been an extremely dependable robotics platform. Rather than start

over with a new chassis, the team decided to improve Wolf with a combination of hardware and

software revisions. A small light bulb icon has been placed throughout this document to highlight

notable innovations over previous designs. Those innovations are summarized below.

• A Simultaneous Localization and Mapping (SLAM) algorithm has been implemented (Section

4.3.3)

• Newly developed data logging software (Section 4.2)

• Improved vision algorithm (Section 4.3.1)

• Improved autonomous path planning (Section 4.4)

• Previous GPS unit replaced with a DGPS unit (Section 3.1)

• Reduced CPU usage in the constantly-running data visualization software (Section 4.6)
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2.3 Team Formation

The Intelligent Systems Club is a volunteer-based student-run organization. The club provides an

atmosphere of mentorship, where faculty advisors instruct students on topics not necessarily covered

in standard engineering courses. Some students receive academic credit for their contributions;

many participate simply for the opportunity to solve interesting problems while furthering their

engineering and research skills.

Since most students do not live near campus, the team has come to rely heavily on online

collaborative tools including Google Wave and Subversion. Weekly meetings are also held, where

members discuss ideas for new designs or assist each other in troubleshooting a problem. Since

the team is largely volunteer-based, authority is delegated equally to all members. Major design

decisions are reached collectively when all team members feel comfortable with a particular course

of action.

• Allen Ackroush: Contributing Developer, Testing, Quality Control

• Gregory P. Czerniak: Autonomous and Navigation Challenge Developer

• Ross Marten: Contributing Developer

• Jon Smereka: SLAM Developer

• Jason Smith: Vision System Developer

• Jakob Yonan: Contributing Developer

2.4 Development Process and Systems Integration Plan

To highlight the continuous improvement philosophy of the Intelligent Systems Club, Wolf used an

iterative development process, and the team simplified systems integration by enforcing a policy of

continuous integration. In other words, features would be added to Wolf in small increments, and

the features would be integrated and tested into the larger system as soon as they were functional.

This afforded the team many benefits:

• Wolf was in a functional, ready-to-compete state at all times.

• Features were integrated one-at-a-time in an iterative development process. Testing was easier

since only one unproven component was in the system at any one time.

• By integrating systems throughout the design process, any design flaws in modules that would

complicate systems integration appeared gradually throughout the process instead of all at

the end.
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Figure 1: The iterative design process.

3 Hardware

Wolf’s chassis was designed to provide easy-access to its internal components such as the motor

controllers, batteries, emergency stop and power switches. The goal was to have a compact but

functional structure wherein the components can flow in a manageable arrangement. The overall

design uses front mounted casters and two independent drive wheels for differential steering.

3.1 Electronics

3.1.1 Power and Electrical System

Wolf is powered by two 12-volt 85 amp-hour marine deep cycle batteries connected in series. This

provides 24 volt DC power accessible to all robot subsystems. For all other subsystems needing a

voltage supply other than 24 volts, DC/DC converters rated at 24V-to-12V and 24V-to-5V were

used to supply power to subsystems requiring 12V and 5V respectively. This configuration allowed

flexible integration between modules with varying power requirements.

3.1.2 Motors

Wolf used widely-available wheelchair motors. The motors can run at approximately 140RPM with

a 12.5-inch wheel mounted directly on the shaft, allowing Wolf to travel up to 5mph. The two

motors are mounted on the left and right side of the robot and are positioned directly opposite

each other. With a load of 60 in-lb, the motors ran at about 130RPM at 7.9A each. Each motor

has a max rated torque of 120 in-lb with an output of 94RPM at 13.2A.

3.1.3 Motor Controller

The Roboteq AX2850 was chosen because it is reliable and integrates easily with other subsystems.

It is equipped with a watchdog timer and several other protective measures to handle variations
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between voltage, current, and temperature. Its two channels operate independently, allowing precise

control of the direction and speed of the robot.

3.1.4 Sensors

Wolf acquires information from the outside environment through a variety of sensors. These sen-

sors provide critical information such as lane detection or proximity to obstacles. The list below

summarizes different sensors used in Wolf and their corresponding functions:

• Odometry

– Quad Optical Encoders

• Vision

– Unibrain Fire-i Digital Camera

– Used to detect lanes and other obstacles

• Positioning

– Hemisphere VS-100 Deferential GPS

– Provided geospatial information used in the Navigation Challenge

• Obstacle Avoidance

– SICK Laser Range Finder

– Provides 180 data points at a 180-degree field of view

– At each specific angle, the SICK returned the distance of the closest object

– Used to avoid collisions

3.2 Computer

The specifications for the HP Pavilion DV6700T used to run both NGRP and the vision software

are as follows:

Processor Intel Pentium Dual Core T2330 / 1.6 GHz
Memory 3 Gigabytes DDR II SDRAM
Graphics Card Geforce 8400M GS
Battery Lithium Ion / 4 hours of life
1x FireWire Port (IEEE 8394)
3x USB 2.0 Port
1x Ethernet Port
Dimensions 10 x 14 x 1.7 in
Weight 6.1 lbs

Table 1: Laptop specifications.
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4 Software

4.1 Strategy

In 2008, the Next Generation Robot Platform (NGRP) framework was written as a software base

for Wolf. For this year’s competition, the team decided to improve NGRP rather than write a new

code base from scratch.

NGRP was originally written to run as a set of modules; each one running as a separate thread of

execution on the computer system. This was originally architected as one monolithic module. This

created high coupling and low cohesion in the software, which reduced readability and orthogonality.

The software was later revised in 2009 so that the single monolithic module could be split into a

series of smaller modules connected in a pipeline. Figure 2 shows a data flow diagram of this

improved pipelined AI approach.
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Figure 2: A data flow graph of NGRP. Blue arrows are UDP, red arrows are map data, black arrows
are differential drive commands, and purple arrows are artificial obstacles.

4.2 Data Logging

Since its inception, NGRP lacked recording functionality. Without this feature, testing was ad-hoc

since the team could not isolate bug-causing conditions. This year, the team added this feature to

NGRP.

Several design considerations went into the logging subsystem:

• Extensibility: Robot technology constantly changes. The logger should be able to support

new data streams.

• Future-proofing: As the logging format is extended, older logs should not become unreadable.
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• Consistency: Recordings should play back in the same order and at the same speed as the

original event.

• Performance: Log recording must not exceed the throughput limits of a hard drive.

• Long-term storage: Logs must not take up excessive disk space.

In the end, the team chose to design an ASCII text-based format based on the recommendations

of Chapter 5 of The Art of Unix Programming by Eric S. Raymond. Text formatting future-proofs

the format compared to a binary format by not defining fixed sizes for data. The format is extensible

by having each packet of data occupy one line of text with a beginning keyword as the first entry

of the line. To add new data types, the programmer simply adds a new keyword to the format. All

lines are timestamped with millisecond-level precision for consistency.

Several team members questioned the performance ramifications of a text-based format. After

analysis, the conclusion was that a text stream containing all of Wolf’s raw sensor data would

require approximately 900 kilobytes per minute of data transfer. This is well within the performance

characteristics of even the slowest hard drives on the market.

Analysis also indicated that the text-based recordings had a 1:5 compression ratio on average.

An hour of log data occupies 52.7 megabytes uncompressed but only 10.5 megabytes compressed.

In the text-based format, a 650 MB compact disc can store nearly 62 hours of raw sensor data.

The team decided that this was acceptable.

Figure 3 shows a sample text file generated by the data logger.

Figure 3: Sample log file.
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4.3 Signal Processing

4.3.1 Vision

After reviewing the performance of the image processing system used in 2009, the team focused

on improvements in noise removal and glare reduction. The current version of the software now

includes a bilateral filter, which removes noise while preserving edges, and a newly modified moment

of inertia operator.

Image capture was performed with a Unibrain Fire-I web camera. A polarizing filter was

mounted in front of the lens to reduce glare.

A large portion of image processing is offloaded to the GPU using the NVidia Cg language. The

parallelized architecture of the GPU is particularly well-suited to pixel-neighborhood operations

such as noise removal, morphology, and edge detection. The vision system also uses the GPU for

bilateral filtering and moment of inertia operations, which are not typically possible in real time

using only the CPU.

The Intel OpenCV library was used for CPU-based image processing.

Figure 4 shows the sequence of operations used to extract lane markings from the image.

Bilateral
Percentile
Threshold

Graduated
Moment of

Inertia
Erode Hough

Transform
Webcam UDP

Figure 4: Wolf’s vision pipeline.

The image is first processed with a bilateral filter to remove noise while preserving edges. The

lane markings are white and are typically brighter than the grass, so most of the grass can be

eliminated by thresholding. A global threshold is determined by computing a histogram for the

image and finding the 95th percentile.

Sometimes large groups of unwanted pixels make it through the threshold stage when sunlight

reflects off of the ramp. The vision system uses a moment of inertia operator to eliminate these

large blobs. The moment of inertia algorithm goes through every pixel and looks at its neighbors

along the major and minor axes. A value is calculated for each axis, similar to an inertial moment.

This is done repeatedly as the major and minor axes are rotated. If the moment of one axis is

significantly greater than the other, the pixel of interest is probably part of a line, so the algorithm

allows it to pass through. Otherwise, the pixel is rejected, since a “blob”-like region typically has

more symmetric inertial moments along each axis. For 2010, the moment of inertia operator has

been modified to include a graduated threshold. Since objects at the top of the frame are more

distant and appear smaller, the requirements for determining an object’s likeness to a white line

vary as the algorithm descends vertically through the image.

Finally, the vision system performs a morphological erosion to get rid of any stray pixels and

then uses the OpenCV implementation of the Hough transform to extract lines from the remaining
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image. The endpoints of the Hough lines are stored in UDP packets that are read by the perception

module.

4.3.2 Mapping

Figure 5: A simulated IGVC course and the real-time map of it produced by NGRP.

After signal processing, each component supplies a piece of the overall situation. However, the

fusion of this information into a map is greater than the sum of its parts. To perform mapping

duties, NGRP contains a module called Perception, which receives all incoming sensor information

and performs mathematical transforms to bring it all to a single point of reference (the map).

4.3.3 SLAM

Simultaneous localization and mapping (SLAM) is an approach used by robots to “discover the

world”. Sensing data is used to gather landmarks and continuously adjust the map to the move-

ments of the robot. Of the several benefits for this, the most prominent is the increased ability to

apply path finding algorithms to autonomous vehicles.

There are several approaches, however the most popular is to use an Extended Kalman Filter.

The Kalman Filter is a set of mathematical equations that provide a control system-like approach to

predicting movements and averaging sensor data. The Extended Kalman Filter does this by taking

a ’snap-shot’ of a non-linear system, such as an autonomous vehicle, per time step, by taking the

derivative of the equations (finding the Jacobian matrices within the sets of equations).

As the system is still experimental and still evolving, the product that is presented at the

competition may have a different approach or even not have the SLAM included due to performance

constraints. However, the steps to implementing the SLAM are as follows:

• Get sensor data - in this case, we used a SICK at the front of the robot.
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• Compare with current data - expanded lines into rectangular planes of varying size, use the

separating axis theorem for planar intersection, and if an original line, add to the database

of landmarks.

• Update Kalman Filter - compute Kalman Gain, update the measurement matrix for the

current position, and update the error covariance matrix.

• Predict ahead using Kalman Filter - update state and projected error covariance.

Each item has a vast amount of work that can go into perfecting the overall system. For example,

by using several different data collecting sources, we can narrow down false positives in sensor data

as well as remove an unknown sensor noise factor. When comparing data obtained by the sensors,

spike landmarks can be singled out and clusters of such can be defined using the k-mean algorithm,

to be treated as one individual landmark.

Finally, the entire system can be compartmentalized such that there is one overarching filter

controlling several small filters in a tree-like fashion. Then, rather than updating one large matrix,

several small matrices are updated by relation to the overarching filter’s updates. This approach

was used on the winning vehicle for the DARPA Grand Challenge, and is planned for development

in the future.

4.4 Autonomous Path Planning

After NGRP generates a local map of the environment, the next task is to determine the robot’s

trajectory. To do this, NGRP uses a pipelined approach, starting with a very generalized direction

vector and feeding it through a series of behavioral filters that make the trajectory more and more

specific to the immediate situation.

4.4.1 Long-term (GDV)

In the Autonomous Challenge, it is very common for robots to turn the wrong way on the course.

This is caused by control software that lacks knowledge of the general direction that the robot

should be headed. The Intelligent Systems Club terminology for this direction is the General

Direction Vector (GDV). The first step of the path planning pipeline is a module that records and

maintains the most current GDV.

To calculate the GDV, NGRP assumes that the robot will initially be pointed in an initially-

correct GDV at the start of an autonomous run. Since IGVC autonomous courses are not straight,

the GDV must change to account for turns. This is done by assuming that if the robot is going

straight on its own volition, the GDV should be changed to the robot’s current direction. This is

based on an assumption that if the robot is not turning, it is most likely on the right track. Both

simulator and real-world testing has repeatedly shown that this assumption is sufficient for the

majority of cases.
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Although the GDV would theoretically always keep the robot in the correct direction, testing

has shown that sometimes it is not enough. To mitigate this, a line segment behind the robot

perpendicular to the GDV known as the Virtual Wall functions as a ”virtual obstacle” to prevent

the robot from turning around or moving to the wrong direction. When the GDV changes, the

Virtual Wall updates accordingly. This provides second layer of turnaround prevention on top of

the GDV.

4.4.2 Mid-term Planning (Macro)

The General Direction Vector (GDV) is then sent to a mid-range planner called Macro. Macro is

a sweep algorithm that casts 180 rays from right to left in front of the robot and chooses the ray

with the longest distance as the steering direction. In 2009 we improved Macro by comparing the

dot product of each ray against the GDV to make it favor directions closer to the GDV. This kept

the robot inside the track much more often.

Despite this improvement, Macro still had a major problem: Wolf would consistently hug one

side of the track and sideswipe obstacles as the robot turned. Macro did this because it was not

designed around the predominant shape of the Autonomous Challenge track: corridors.

As you can see in the red ray graphs in Figure 6, openings in the track appear as columns of

rays with the same distance. What happens if a column of rays are the longest? Macro 2009 would

steer to the side of the column, since it would detect the first “longest ray”s as the absolute longest

and ignore all the others. In contrast, Macro 2010 sees the sweep as a series of columns and aims

the robot toward the center of the longest column. The result can be seen in Figure 6: the robot

no longer hugs walls and obstacles.

Figure 6: A comparison of 2009 Macro and 2010 Macro.
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4.4.3 Obstacle Avoidance (Dodge)

After Macro completes execution, the trajectory is fed into a module named Dodge. Dodge’s logic

is minimal: it simply turns away from the direction of the closest obstacle. Currently Dodge’s

influence is restricted only to obstacles one meter away or less. This way, simple reactive behavior

only occurs when it is absolutely needed.

4.5 Navigation Challenge

Figure 7: A simulated instance of the Navigation Challenge on the left, and NGRP on the right.

The pipelined approach to writing NGRP made the design for the Navigation Challenge easier,

since the majority of the control pipeline could be reused. In order to implement the functionality

of the Navigation Challenge, a module was created that would read a list of GPS coordinates from

a file. The robot would then proceed to each waypoint in the same order as the list in the file.

After the inital loading procedure, the module would constantly do three things in an infinite

loop:

1. Check to see if the robot has reached the current waypoint.

2. If the robot has reached the waypoint, set the current waypoint to the next waypoint on the

list. If there are no remaining waypoints, stop.

3. If the robot has not reached the waypoint, set the General Direction Vector to the as-the-

crow-flies trajectory between the robot’s location and the waypoint.

4.6 Plotting

After profiling NGRP’s code for performance, the team discovered that NGRP was using 90% of

available CPU power on the onboard computer, and the vast majority of that 90% was used to
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draw the map to the screen with a software renderer. At the same time, testers and students who

received demonstrations of the robot would consistently complain that NGRP’s two-dimensional

map was hard to understand. This led to two problems at the same time: the laptop would lose

its charge too quickly, and the team’s turnover rate was too high since many students would give

up trying to understand what was going on.

To fix this, the team wrote a new plotter module that used OpenGL instead of software render-

ing. This diverted the task of drawing the map to the hardware-accelerated graphics card, which

reduced Wolf’s CPU usage to less than 10%. At the same time, the team added a new 3D plotting

view. The 3D plot is also considerably more simple to understand, leading to more students and

testers interested in the project.

2D View New 3D View

Figure 8: New OpenGL-based plotter.

4.7 Simulation

A simulator has been developed so that high level path planning algorithms can be tested when it

is either impractical or impossible to use the robot outdoors. The simulator also provides a type

of immediacy not available with physical testing: innumerable course configurations can be tested

one after the other with no set-up time.

The simulator sends data in exactly the same manner as the real sensor data so that the actual

software that runs on the robot can be tested with no special modifications. Having a robust

simulator coupled with newly developed data logging software has made it possible to analyze high

level behaviors and isolate bugs more closely than ever before.
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5 Safety

The University of Michigan - Dearborn Intelligent Systems Club placed safety as its absolute highest

priority. The safety ramifications of major design decisions were discussed throughout the design

process.

The Intelligent Systems Club considered the safety requirements enumerated in the IGVC rules

to be a minimum baseline for physical safety, and Wolf met these standards. There was a mechanical

emergency stop on the rear of Wolf that functioned as an electrical switch to the main power circuit,

and would cut power to everything if the button was pressed. There was also a wireless emergency

stop effective to 50 feet that would cut electrical power to the vehicle when engaged. In addition

to the IGVC requirements, in order to use a manual controller to drive the robot outside the

autonomous modes, one had to hold down a dead-man’s button to prevent accidental movement

commands from causing crashes.

To supplement the standard IGVC safety requirements, the software also contained many safety

features. The final module in any autonomous control pipeline on NGRP was called Safety, and

it contained several final sanity checks made to trajectories before they were sent to the motor

controller.

The first sanity check was a forward crash detector, which stopped Wolf if the robot was being

instructed to drive directly into an obstacle. In 2009, a sanity check was added for keeping the

robot from making turns into obstacles. Also, to prevent the robot from turning so fast that it may

not have been able to issue a corrective command in time to prevent a crash, there was a check

that placed upper bounds on the robot’s turning rate. These safety checks significantly reduced

the number of accidents that occurred during testing runs.

6 Performance and Cost Estimate

Tables 2 and 3 at the end of the paper contain the information for cost and performance charac-

teristics, respectively.

7 Conclusion

The University of Michigan - Dearborn Intelligent Systems Club believes that its approach to the

design of Wolf in 2010 will result in significantly higher performance in the 18th Annual Interna-

tional Ground Vehicle Competition. By focusing on improving the existing stable Wolf platform

with minor modifications to the hardware, more time could be spent developing more intelligent

algorithms for path planning and navigation. Embracing an iterative design process coupled with

continuous integration resulted in a more stable platform throughout the product lifecycle. The

team spent approximately 2000 man-hours total on this project incorporating these changes, and

the team believes that Wolf will perform well in 2010.

13



8 Acknowledgements

The team would like to thank Larry Sieh, Professor Nattu, Anthony Lucente, and Jonathan Hyland

for their help and support, as well as our many sponsors for their invaluable financial and equipment

donations.

14



# Description Actual Cost Cost To Team

Chassis Construction / Mechanical Design

1 Chassis $250.00 $250.00

2 Wheels $80.00 $80.00

2 Casters $40.00 $40.00

1 Painting Supplies $28.90 $28.90

1 Mounting Supplies $49.47 $49.47

Motor Control Circuitry

1 Roboteq Motor Controller 700.00 700.00

Computer

1 HP Laptop Computer 999.00 999.00

Sensors

2 Wheel Encoders: Quad Optical Encoders 338.00 316.00

1 Sick Laser Sensor 5,273.00 389.00

GPS

1 Hemisphere VS100 Series DGPS 4,195.00 0.00

Camera

1 Fire-i Firewire Webcam with Wide-Angle Lens 130.00 130.00

Controller Transmitter and Receiver

1 Wireless Emergency Stop Receiver 60.00 60.00

1 Wireless Emergency Stop Transmitter (1500 feet) 37.00 37.00

Accessories

2 Batteries 320.00 320.00

6% Sales Tax $750.02 $203.96

Total $13,250.39 $3,399.37

Table 2: Total expenses.

Attribute Design Prediction
Maximum Speed 5.0mph
Climbing Ability 30 degree ramp
Nominal Power Consumption (Watts = Amps x Volts) 240 watts
Battery Operating Time (24v 55AH Battery System) 6 hours
Distances at which objects can be detected 5.5 meters
Waypoint accuracy (DGPS) <60cm 95% of the time
Reaction Times 60-120 ms depending on configuration
How vehicle deals with complex obstacles Reactive Fuzzy Logic approach

Table 3: Performance attributes.
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I certify that the design and creation of Wolf has been significant and is equivalent to what

might be awarded credit in a senior design course.

Dr. Narasimhurthi Natarajan

Professor of the Department of Electrical and Computer Engineering

University of Michigan-Dearborn

Date


